Nonlinear Optics - Time Dependent Hartree-Fock

 

  • In MOPAC2012, it is possible to perform calculations of the first and second static hyperpolarizabilities, as well as of other nonlinear optical properties of a lanthanide complex, by using the POLAR keyword.
     
  • As an example, let us consider the complex LOWBEE: [(1,10-(1,1'-Dimethylene-3,3'-biisoquinoline-2,2'-dioxide)-4,7,13,16-tetraoxa-1,10-diazaoctadecaphane)-(trifluoromethanesulfonato-O,O')-europium(iii)], below:
    lowbee ccsd
     
  • First you must draw the structure of your complex and prepare a MOPAC2012 input data file. For that purpose, please follow the Drawing Complexes tutorial.
    • In the Drawing Complexes tutorial, instead of step 5 of the Optimize the geometry of the lanthanide complex with MOPAC2012 do the following: in the field “Additional keywords”, replace GNORM=0.01 by GNORM=0.25, add SPARKLE, and add POLAR(E=(0.0)), as such: GNORM=0.25 SPARKLE POLAR(E=(0.0)).
       
    • Finish the Drawing Complexes tutorial. As an example, we provide the MOPAC2012 input file lowbee.mop.
       
  • The nonlinear optics results are presented in the end of the MOPAC2012 .out file, as shown below:
    			
     ******************** TDHF POLARIZABILITIES ********************
    
    
    
    
     ENERGY OF "REORIENTED" SYSTEM WITHOUT FIELD:      103.7009259626
    
    
      NFREQ=  1  IWFLB=  0  IBET=  1  IGAM=  1
      ATOL= 0.10000D-02  BTOL= 0.10000D-02    MAXITU=  500    MAXITA=  150
    
    
     *****************************************************************
     CALCULATION OF STATIC FIELD QUANTITIES
     *****************************************************************
    
     +++++ ALPHA AT       0.00000 EV.
    
                               COMPONENTS OF ALPHA
    
                         *X           *Y           *Z
               *=X:     490.7466      70.1518     -64.4160
               *=Y:      70.1518     457.4762      94.8438
               *=Z:     -64.4138      94.8407     543.4913
    
      ISOTROPIC AVERAGE ALPHA =     497.23805 A.U. =     73.68308 ANG.**3
    
     +++++ BETA (SECOND HARMONIC GENERATION) AT       0.00000 EV.
    
                                  COMPONENTS OF BETA
                *XX         *XY         *YY         *XZ         *YZ         *ZZ
       *=X  -418.45256    57.73681    -3.66392  -129.64914    56.17695   226.10560
       *=Y    57.76086    -3.70124    66.35581    56.09767   122.54567   121.59046
       *=Z  -129.63230    56.12991   122.53061   226.08379   121.57058     5.49809
    
    
     AVERAGE BETAX(SHG) VALUE AT   0.00000 EV =       -117.6302 a.u. = -0.101626E-29 ESU
     AVERAGE BETAY(SHG) VALUE AT   0.00000 EV =        147.4067 a.u. =  0.127351E-29 ESU
     AVERAGE BETAZ(SHG) VALUE AT   0.00000 EV =         -0.9629 a.u. = -0.831866E-32 ESU
    
    
    
     AVERAGE BETA (SHG) VALUE AT   0.00000 EV =        188.5909 a.u. =  0.162932E-29 ESU
       (1 a.u. = 8.639418X10-33 esu)
    
    
    
     +++++ ALPHA AT       0.00000 EV.
    
                               COMPONENTS OF ALPHA
    
                         *X           *Y           *Z
               *=X:     490.7466      70.1518     -64.4160
               *=Y:      70.1518     457.4762      94.8438
               *=Z:     -64.4138      94.8407     543.4913
    
      ISOTROPIC AVERAGE ALPHA =     497.23805 A.U. =     73.68308 ANG.**3
    
    
     GAMMA (THIRD HARMONIC GENERATION) AT    0.00000 EV.
    
    
     GAMMA(X,X,X,X) =         65367.73738
     GAMMA(Y,Y,Y,Y) =         39838.07460
     GAMMA(Z,Z,Z,Z) =        269371.79491
     GAMMA(X,X,Y,Y) =         18570.97627
     GAMMA(X,X,Z,Z) =         40182.46797
     GAMMA(Y,Y,X,X) =         18570.97651
     GAMMA(Y,Y,Z,Z) =         54604.78176
     GAMMA(Z,Z,X,X) =         40182.47118
     GAMMA(Z,Z,Y,Y) =         54604.78627
    
    
     AVERAGE GAMMA VALUE AT    0.00000 =        120258.81337 a.u. =        60570.78755 ESU (X10-39)
    
    
    
    
    
     TOTAL CPU TIME:           507.08 SECONDS
    
     == MOPAC DONE ==
        
        
  • For convenience, we provide the MOPAC2012 output file lowbee.out.
     
  • You can specify the energies of the radiation to be used in eV with the E=(n) option. For example, if instead of the static values for these properties, E=(0.0), you want to compute them for a 0.25eV laser source, simply specify: POLAR(E=(0.25)).
     
  • Further nonlinear optical properties of lanthanide complexes can also be computed by selecting additional keywords. Example, for a 1.0eV laser source, use the following keywords to compute:
    • Second Harmonic Generation: POLAR(E=(1.0), IWFLB=1)
       
    • Noniterative calculation of Second Harmonic Generation: POLAR(E=(1.0), BETA=-1)
       
    • Electrooptical Pockels Effect: POLAR(E=(1.0), IWFLB=2)
       
    • Noniterative calculation of Electrooptical Pockels Effect: POLAR(E=(1.0),BETA=-2)
       
    • Optical Rectification: POLAR(E=(1.0), IWFLB=3)
       
    • Noniterative calculation of Optical Rectification: POLAR(E=(1.0), BETA=-3)
       
    • Third Harmonic Generation: POLAR(E=(1.0), GAMMA=1)
       
    • DC-EFISH: POLAR(E=(1.0), GAMMA=2)
       
    • Intensity Dependent Index of Refraction: POLAR(E=(1.0), GAMMA=3)
       
    • Optical Kerr Effect: POLAR(E=(1.0), GAMMA=4)
       
  • For more information on these keywords, refer to "Time-Dependent Hartree-Fock" on the MOPAC2012 manual.